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Monte Carlo simulations of the bond fluctuation model of symmetrical polymer 
blends confined between two "neutral" repulsive walls are presented for chain 
length NA= NB=32 and a wide range of film thickness D (from D = 8  to 
D=48  in units of the lattice spacing). The critical temperatures T~(D) of 
unmixing are located by finite-size scaling methods, and it is shown that 
T~(oo)- To(D) oz D -j/'', where v3~0.63 is the correlation length exponent of 
the three-dimensional Ising model universality class. Contrary to this result, it 
is argued that the critical behavior of the films is ruled by two-dimensional 
exponents, e.g., the coexistence curve (difference in volume fraction of A-rich 
and A-poor phases) scales as ~b~ x - r  = / } ( D ) [ I -  T/To(D)] p2" where f12 is 
the critical exponent of the two-dimensional lsing universality class (f12 = 1/8). 
Since for large D this asymptotic critical behavior is confined to an extremely 
narrow vicinity of T~(D), one observes in practice "effective" exponents which 
gradually cross over from f12 to f13 with increasing film thickness. This 
anomalous "flattening" of the coexistence curve should be observable 
experimentally. 

KEY WORDS: Monte Carlo simulation; thin films of symmetrical polymer 
mixtures; phase separation; crossover scaling; critical temperature; phase 
diagram in the thermodynamic limit. 

1. I N T R O D U C T I O N  A N D  THEORETICAL B A C K G R O U N D  

T h i n  p o l y m e r i c  f i lms h a v e  f o u n d  i n c r e a s i n g  scient if ic  i n t e r e s t  recent ly ,  a n d  

also v a r i o u s  a p p l i c a t i o n s .  C o n s i d e r i n g  t w o - c o m p o n e n t  p o l y m e r  b l e n d s  in a 

th in - f i lm g e o m e t r y ,  t h e r e  is a n  i n t e r e s t i n g  i n t e r p l a y  b e t w e e n  the  sur face  

effects a t  t he  wal ls  a n d  the  f ini te-s ize effects d u e  to  the  sma l lne s s  o f  t he  
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thin-film thickness D/~-7) Since in experiments one typically works with two 
nonequivalent surfaces (e.g., the polymer film covers a solid substrate and 
is exposed to vacuum or air on the other side), and these surfaces are not 
"neutral", i.e., one of the two species (A, B) will be preferentially attracted 
by the surfaces, these experiments are not straightforward to interpret. 
Note that due to slow kinetics t2-7) it is not always easy to characterize the 
true equilibrium behavior of such films. 

While for other systems [e.g., magnetic thin films ~8-~~ (see ref. 8, for 
review), liquid-gas systems tH-'4) (see ref. 14 for a brief general review), etc. ] 
the phase transitions in such a confined geometry have been studied 
theoretically for a long time, the theoretical analysis of the phase separa- 
tion in thin polymer blend films has only been considered recently .t~5-~7~ 
This might be due to the fact that already the phase separation in bulk 
polymer mixtures poses challenging problems. As is well known, the 
fluctuations of the volume fraction ~ (of species A in a binary mixture of 
A and B chains) are correlated over a length scale ~ which diverges as 

oz I I - T / T e l  - v as the critical temperature 7",. of the phase separation is 
approached. The strength of this divergence is determined by the critical 
exponent v of the correlation length. Mean-field theory (or Ginzburg- 
Landau theory, respectively) predicts v=  VGL = 1/2. However, this mean- 
field behavior is n o t  observed very close to To, but only further away, 
where ( is smaller than a "crossover length" ~ ..... [see Eq. (2)]. Instead, 
if ( >  ( ...... one expects the bulk (three-dimensional) polymer mixture 
to exhibit the s a m e  critical behavior as the three-dimensional Ising 
model, t~s'~9) This behavior will be modified significantly in a thin-film 
geometry, since the thickness of the film D enters as another length scale 
which affects the values of both the critical temperature and the critical 
exponents. Several regimes must then be distinguished as shown in Fig. 1. 
If ~ >> D >1 ~ ...... the mixture should essentially behave as a t w o - d i m e n s i o n a l  

system, i.e., one expects ~ oc I1 - T / T e l  -v,, where v2 = 1 is the critical expo- 
nent of the correlation length of the two-dimensional Ising model, whereas 
the t h r e e - d i m e n s i o n a l  bulk behavior is supposed to be recovered in the limit 
D ~  o0, i.e., for D > > ~ > (  ..... . Thus, there are three types of critical 
behavior that compete with each other in a thin polymer film: three-dimen- 
sional Ising (for D ~ ~ > ~ ..... ), two-dimensional Ising (for ( >> D >I ~ ..... ), 
and mean-field behavior (for D > ~ ..... > ~). 

The interplay of D and ~ ..... during the unmixing phase transition 
of an AB polymer blend and its influence on the position of the critical 
temperature in the thin film has been studied recently in the framework of 
mean-field theoryJ ~5-~71 Tang e t  aL ~jS~ adapt the well-known 18"9) Ginzburg- 
Landau type treatment to polymer films with two equivalent neutral walls 
(no preferential attraction of a species to a wall). For thick films they find 
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Fig. 1. Schematic description of the regimes where different critical behavior is expected for 
a polymer mixture. The correlation length ~ can be varied by choosing suitable temperature 
distances from the critical point, while the crossover correlation length ~=o, can be varied by 
choosing suitable chain lengths [see Eq. (2)]. A crossover from three-dimensional (3d) to 
two-dimensional (2d) critical behavior is expected when ~ ~ D, while a crossover from mean- 
field to Ising behavior is expected when ~ ~ r In the Ising regime the dimensional cross- 
over (3d--* 2d, from regime III to IV) implies a change of critical exponents, while in the 
mean-field regime the three-dimensional crossover (from regime I to II) implies only a change 
of critical amplitude prefactors. Note that the regime very close to the origin is not physically 
meaningful (both ~ and ~ . . . .  need to exceed the radius of gyration of the chains in order that 
critical behavior can be observed.) 

a shift Tc(oo) - T~(D) ~: D -z,  as expected from a m e a n  field theory,  since 
the general  scal ing re la t ion  for the critical po in t  shift is (g-' L ~4, 2o) 

T c ( o o ) -  To(D) oc D -1Iv (1) 

with v = VGL = 1/2, as m e n t i o n e d  above.  F o r  film thickness  D less t han  the 
crossover  l eng thq  s, 21, 22),  4 

. . . . .  w. bN  (2) 

4 For conditions where the correlation length of concentration fluctuations ~ does not exceed 
ffcro~, the Landau description of critical phenomena in polymer mixtures is selfconsistent 
("Ginzburg criterion ''(21' 22.18)). 
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where b is the length of an effective segment and NA = NB = N the number 
of segments, Tang et al. ~5) find Tc(oo)--To(D) oc D -~ instead. An implicit 
assumption made by Tang et al. is that the film thickness D is large enough 
to leave the three-dimensional Gaussian-like configurations of the single 
polymer coils (i.e., coil size oc~N)  unperturbed. Raphael, Ilv) on the other 
hand, considers the case of ultrathin films (D ,~ , , /~),  where the chains are 
strongly compressed and essentially exhibit two-dimensional behavior. 

The mean-field study of Tang et al. 1~5) only applies to the crossover 
from regime I to regime II. This crossover is less interesting than that from 
regime III to regime IV, since the critical exponents of mean field theory 
do not depend on the spatial dimension d, whereas they do for the Ising 
universality class. Therefore we study the latter crossover in the present 
work, which is, however, not only of theoretical, but also of practical inter- 
est because the shape of the miscibility gap between the two coexisting 
phases with volume fraction alc2~ ~b I1~ of species A obeys �9 r c o e x ,  c o e x  

( 2 )  ( 1 )  ~b . . . .  - ~  . . . .  = I ~ ( D ) [ 1 - - T / T c ( D ) ]  a for T<<.Tc(D) (3) 

In Eq. (3)/~ is a "critical amplitude ''(23) and fl is the critical exponent of the 
order parameter, which depends on the dimensionality of space in general. 
While Landau theory (23) as well as Flory-Huggins theory of polymers 
blends in the bulk ~24"25> fiX (26) fl~---1/2, the universality principle 123'27) 
implies that the bulk behavior of polymer blends near Tc(~) ,  where the 
correlation length ~ exceeds ( ..... (see footnote 4), is Ising-like, i.e., fl has 
the value tEs) 

fl = f13 .-~ 0.325 (4) 

of the three-dimensional Ising model. Both simulations t2"29) and recent 
experiments c3~ have shown that the Ising regime is easily observable over 
a wide range of chain lengths, and one has to go to very large N to estab- 
lish mean-field critical behavior. However, two-dimensional criticality is 
expected when ~ exceeds D, which is easily reached for polymer blends, 
since in the bulk ~ has a very large critical amplitude prefactor ( , , s )  

~ = ~(N)[ 1 -- T/T~(oo)] -~3, ~ b N ~ - ~ 3  (5) 

where v3 ~0.63 ~28) is the correlation length exponent of the three-dimen- 
sional Ising model. For ~ > D we then expect Eq. (3) to hold with (23) 

fl--flz = 1/8 (6) 

While the Landau theory of Tang et aL ~5~ implies a parabolic shape of the 
coexistence curve throughout, i.e., fl = 1/2, Kumar et al. c~6) use Eq. (4) even 
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for very thin films. Since they studied only two thicknesses and found 
To(D) from an extrapolation where Eq. (3) with fl=fl3 is fitted to their 
data, only a preliminary test of Eq. ( 1 ) has been possible. 

The aim of-the present work is a Monte Carlo study of the coexistence 
curve in thin polymeric films with particular emphasis on a proper descrip- 
tion of the crossover in the critical behavior and the shift of the critical 
point with thickness. While for the Ising model such a study was already 
presented 20 years ago, ~'~ our work is the first of its kind for polymer 
mixtures. Section 2 briefly recalls the model and simulation technique, 
while Section 3 discusses the analysis of our data in terms of suitable cross- 
over scaling concepts. ~3~'32) Section4 presents our phase diagrams and 
concludes with a discussion and outlook on more general situations. 

2. MODEL AND S I M U L A T I O N  TECHNIQUE 

As in previous studies of symmetrical polymer mixtures in the 
bulked8. ~9) we use a simple cubic lattice and represent polymer chains by 
"effective monomers" blocking all eight sites of an elementary cube from 
further occupation. These "monomers" are connected by "effective bonds" 
whose lengths may take the values b = 2, x//5, x/~, 3, and x/"i-6 (all lengths 
being measured in units of the lattice spacing). We work at a volume 
fraction ~b v = 0.5 of vacant sites, since various criteria show that the corre- 
sponding monomer density already represents a melt density/33" 34) but on 
the other hand the acceptance rates for the moves of our dynamic Monte 
Carlo algorithm 5 are still fairly high. These moves are a mixture of random 
hopping of single monomers ~33) and "slithering snake"-type ~35" 36) moves in 
analogy to ref. 37, since in this way one reaches a rather fast equilibration 
of the chain configurations/37) 

All our data are for a single chain length N = 32. When comparing this 
choice to experiment, one should recall that we work with a coarse-grained 
model which can be thought of as integrating n = 3-5 successive chemical 
bonds along the backbone of a real polymer chain into one effective bond 
of the model/38~ This choice of model is legitimate as the unmixing 
transition of polymer blends deals with long-wavelength phenomena [cf. 
Eq. (5)] and the unrealistic details on the scale of b hence should not 
matter. Since N'--32 corresponds to a degree of polymerization of about 
Np = 100 to Np = 150, the study of longer chains would clearly be desirable. 
However, this is not done here, since previous work C~8" 19) has shown that 
one does only find pure (three-dimensional) Ising critical behavior in the 

5 See ref. 35 for a general discussion of Monte Carlo mehods for lattice models of polymers. 
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bulk for N ~< 32. F o r  N~> 64 one has entered the regime where a gradual  
crossover to mean-field behavior  sets in, which extends over  several 
decades in chain length. 1~8'3~ We wish to avoid  the compl ica t ions  of 
dealing s imul taneously  with mult iple crossovers here, a l though it is well 
possible that  such phenomena  will be relevant  for experiments.  Therefore 
we restrict a t tent ion to short  enough chains that  are strictly Ising-like in 
the bulk. 

As in a previous w o r k ,  119"39) we chose a square-well- type potent ia l  

between monomers  in its most  symmetr ical  form (CAB = --eAA = --eBB = e) 
with an interact ion range x/'-6. This means  that  all neighbors  within the first 
peak  of the radial  d is t r ibut ion function contr ibute  to these interactions,  t39) 
As usual ,  tl9"29) we work  in the semi-grand canonical  ensemble,  where tem- 
pera ture  and chemical  potent ia l  difference A~, =/~A--/~B between A and B 
monomers  are the independent  cont ro l  parameters .  In addi t ion  to the 
moves to relax the chain configurat ions as described above,  one then also 
needs moves  where A chains are transferred into B chains of  fixed con- 
figuration (or  vice versa).  Being interested in the coexistence curve and 
considering "neutral"  walls (i.e., there are no wall chemical  potent ials  
acting on A or  B monomers  present) ,  the s imulat ions are in fact carr ied out  
exclusively at ,d~ = 0. 

Our  latt ice geometry  then is L x L x D with two free (repulsive) L x L 
surfaces and per iodic  b o u n d a r y  condi t ions  in the other  latt ice directions 
parallel  to the walls. M o n o m e r s  cannot  cross the wails, but  in o ther  respec- 
ter these walls only have the effect of  "missing neighbors"  for monomers  
close to this wall (i.e., within the interact ion range).  In  other  work  t4~ a 
short - range preferential  a t t rac t ion  between the walls and  one of  the species 
was in t roduced in order  to test theoret ical  concepts  on surface enr ichment  
and wetting phenomena,  t4t~ This is not  done here. Also we do not  assume 
any change of  the s t rength (or  range, respectively) of  the pairwise inter- 
act ion e near  the free surfaces (by a s t rong enough surface enhancement  
of  e, one may  reach a s i tuat ion where phase separa t ion  at  the surfaces in 
a two-dimensional  geometry  sets in at  a tempera ture  where the bu lk  is still 
miscible; see corresponding studies of  Ising models) ,  t8,42,43~ 

In this s imulat ion we focus on the finite-size effect due to the finite 
thickness D of  the film only. The film thickness takes the values D = 8, 

Fig. 2. Average value of the order parameter ( IMI > plotted vs. reduced temperature k B TIe 
for (a) D= 10 and (b) D = 36. Several choices of L are included as indicated in the figure. 
Note that the curves are smooth for any finite value of L. Only for L ~ co is Eq. (3) expected 
to be found. The arrow indicates the critical temperature To(D) in the limit L ~ oo, as results 
from the cumulant intersection method described in the text (see Fig. 4). 
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10, 12, 14, 16, 20, 24, 28, 36, and 48 in our studies. Since Monte Carlo 
simulations deal with systems which are finite in all linear dimensions, the 
effects due to the finite linear dimension L in the direction parallel to the 
wall have to be disentangled from the thickness effects in which we are 
interested here. This can be done by studying at every value of D a 
sequence of values of L - - i n  practice we use mostly L = 48, 64, and 80, but 
occasionally also other sizes (up to L = 352 for D = 8, up to L = 128 for 
D = 10 and D = 14) were considered as well--and by carrying out a finite- 
size scaling extrapolation to L ~ oz at fixed D. This finite-size scaling 
analysis(9. 19.24. 44) in principle works as for the analysis of phase separation 
in the bulk. In practice the accuracy is somewhat limited here due to the 
problem of crossover from three-dimensional to two-dimensional criticality, 
as discussed in the next section. 

For generating the "raw Monte Carlo data" for this analysis, we 
carried out a run at three temperatures in the critical region with about 
320,000 Monte Carlo steps per monomer each (independent configurations 
are obtained after about 60 MCS), which were used as input for a "multi- 
histogram" interpolation (~9) to obtain data as shown in Figs. 2 and 3 for 
the moments of the order parameter M of the thin films defined as 

M := (hA --nB)/(nA +nB) (7) 

where nA is the number of A chains and nB the number of B chains in the 
system. Remember that our semi-grand canonical simulation algorithm 
keeps the total number n = na + nB of chains fixed, while their difference is 
fluctuating. We estimate that the statistical accuracy of our data for ( IM[ ) 
and ( [MZl)  is better than 1% relative error. Note further that in a sym- 
metrical mixture the volume fractions ~bA, B of A and B monomers (i.e., 
q~A,B = 8NnA.B/L2D; 8 is number of lattice sites occupied by one monomer 
in the bond-fluctuation model) at the coexistence curve are related to 
( [MI ) via ( 19, 26, 29) 

~b A 1 ~b B 1 
(1 + ( I M I ) ) ,  ( 1 -  ( I M I ) )  for L - - * ~  (8) 

1 - ~ v  2 1-~bv 2 

The choice of signs in Eq. (8) implies that we consider only the A-rich part 
of the phase diagram. For symmetrical mixtures the phase diagram exhibits 
mirror symmetry, in the plane of variables (T, ~b := ~bA/[ 1 --~bv]) around the 
line ~b = 1/2. Hence the behavior of the B-rich part of the phase diagram is 
simply obtained by interchanging the labels A, B in Eq. (8). 

From Fig. 2 it is evident that for finite L the order parameter ( I M I )  
is a smooth function of temperature. Thus one cannot straightforwardly 
infer the temperature To(D), where the order parameter vanishes for 
L ~ ~ [see Eq. (3)], and neither the exponent p nor the amplitude factor 
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B(D) can immediately be determined. However, finite-size scaling (~9' 29.44) 
implies that reduced moment ratios with ij = kl 

kl Uu(T, L) := ( IMlk) ' /<  IMI") j (9) 

near T~(D) should depend on the ratio L/~ only, when ~ ~> D, so that one 
deals with the limiting two-dimensional critical behavior 

U,j(T, ~' L)  = O~'(L/r  -~ '  ( U~(O) for T--, T~(D) 10) 

Equation (10) implies that ultimately (i.e., for large enough L) all curves 
Uk!(T, L) when plotted as function of T for different L must intersect in a 
common intersection point ~'k!(0), and the temperature for which this 
happens is To(D). Figure 4 shows a test of this concept for D = 10. Whereas 
Eq. (10) yields a very precise estimate of Tc(D) for D =  10, there is con- 
siderable scatter of the intersection points for larger film thicknesses and 
thus T~(D) can be estimated with this method only with a relative accuracy 
of about 1% in general. This is much worse than for bulk three-dimen- 
sional problems, (~9'29) where a relative accuracy of 0.1% (or even better) 
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could be reached. However, this difficulty is inevitable here due to the 
crossover from three- to two-dimensional criticality, which is felt as long as 
the ratio L/I) is finite .(3~, 32) 

An alternative method ~44~ to estimate To(D) is to extrapolate the loca- 
tion of the point where the collective scattering junction Sco, is maximal 
(Fig. 5). Remember that S~o,, defined as (cf. Fig. 3) 

Seo, = L2D[(M:) - ( I M [ ) 2 ]  (11) 

for T<Tc(D), describes the intensity of scattering from concentration 
fluctuations for states at the coexistence curve of the mixture .(~9,29~ One 
expects that the ' temperature of the maximum Tm~ scales as 

Tma~(L,D)-Tc(D)ocL -1/~ for L - ~ o o  (12) 

where v =  v2= 1 is the two-dimensional value of the correlation length 
exponent. Of  course, Eq. (12) is supposed to be valid for large enough 
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Table I. Dependence of the Critical 
Temperature Tc on the Film Thickness D 

D e/k B Tc 

c~ 0.0142486 ~ 19~ 
48 0.0148 -I- 0.00015 
36 0.0152 + 0.00015 
28 0.0159 + 0.00016 
24 0.0164 + 0.00016 
20 0.0171 +0.00017 
16 0.0181 +0.00018 
14 0.019 -+0.00019 
12 0.0203 _ 0.0002 
10 0.0219 _+ 0.00022 
8 0.02471 _+ 0.00025 

"aspect rat io" LID >> 1, which is not  really reached for our  larger values of  
D. Therefore the accuracy of  our  final est imates for To(D) (see Table I) 
deter iorates  with increasing D, and no a t tempt  was made  to locate any 
t ransi t ion for D > 48. 

3. D I M E N S I O N A L  C R O S S O V E R  A N D  F I N I T E - S I Z E  S C A L I N G  

Given the est imates for T,.(D), one can try to fit da ta  such as shown 
in Figs. 2 and 3 to finite-size scaling forms such as t~9"44~ 

( [ M l )  L"=l f f l (L" t )  with t = I 1 - T / T c ( D ) I  (13) 

where u, v are "effective exponents"  determined such that  an opt imal  
collapse of  the family of  curves ( [ M [ )  for all L onto a "master  curve" 
.~t(z) is obtained.  While for a three-dimensional  Ising system (i.e., 
L, D ---, o0) the theory t9' 19,44~ implies v =f13/v3, u = 1/v 3, we expect here for 
L--* oo and D fixed (i.e., large aspect  rat ios L/D)  a two-dimensional  
behavior ,  i.e., v = f l 2 / v  2, u = 1/v a. 

As al ready ment ioned above,  the aspect  rat ios  L / D  studied were not  
large enough to exhibit  the two-dimensional  critical behavior  clearly. As a 
consequence, it is bet ter  not  to fix u, v to their  theoret ical  values, but  ra ther  
allow for "effective exponents"  which smoothly  interpolate  between the 
two- and three-dimensional  values. Such "effective exponents"  have a well- 
defined meaning even in the f ramework of a renormal iza t ion  group descrip- 
t ion of  d imensional  crossover. 145~ Figure 6 shows, as an example,  da ta  for 
D = 16 and D = 36. It is seen that  within some scatter  a fairly reasonable  
"da ta  collapsing ''t44) is obtained.  Since the idea t45~ that  such effective 
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Table II. Effective Exponents and Critical amplitudes ~ 

1021 

D u v flea" I1' Y~n" v,tr /~fr d~n" 

2-dim 1 1/8 1/8 7/4 7/4 1 - -  2 
8 0.913 0.174 0.191 1.807 1.979 1.095 - -  2.16 

10 1.149 0.156 0.136 1.741 1.514 0.870 1.17 2.05 
12 1.196 0.161 0.135 1.706 1.427 0.836 1.11 2.03 
14 1.255 0.207 0.165 1.756 1.400 0.797 1.38 2.17 
16 1.398 0.241 0.172 1.621 1.160 0.716 1.53 2.10 
20 1.302 0.273 0.210 1.564 1.201 0.768 1.20 2.11 
24 1.186 0.259 0.219 1.474 1.243 0.843 1.26 1.99 
28 1.203 0.285 0.237 1.489 1.238 0.831 1.43 2.06 
36 1.211 0.366 0.302 1.355 1.119 0.826 1.62 2.09 
48 1.128 0.390 0.346 1.300 1.153 0.886 1.56 2.08 
co 1.587 0.516 0.325 1.970 1.241 0.630 - -  3 

"For  D = 8 the size of the radius of gyration is comparable to the film thickness, which 
prevents a determination of B~tr (see text for further details). 

exponents have physical significance and satisfy the standard scaling 
relations among critical exponents ~23"27) implies that the effective order 
parameter exponent fl~r can be defined as 

[3~fr = v/u (14) 

we can also estimate the corresponding "effective" amplitude /~e~D) [cf. 
Eq. (3)] by fitting the scaling function 3~r(z = L"t) in Eq. (13) for large z as 

_~t(z ~ 1 ) = B~fr(D) z a~" (15) 

and in this way estimates for Befr are obtained in addition. Apart from an 
(extremely narrow) region around the critical temperature To(D) where 
Eq. (3) holds with the true two-dimensional value ,82 = 1/8, a complete 
description of the coexistence curve thus becomes possible, since Eqs. (13) 
and (15) imply that for L ~  oo 

( I M I )  =/~e~D) t pc~ (16) 

Table II collects our estimates for the effective exponents and amplitudes. 
There we have also analyzed the collective scattering function Soon 

Sr L'" = S(L"t) (17) 
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Corresponding to the discussion following Eq.(13) ,  one expects the expo- 
nent  w to cross over ~ o m w  = y3/v3in d =  3 to w = y2/v2in d =  2. Hence we 
define 

y=~=w/u (18) 

in analogy to Eq. (14). Both w and Yefr are included in Table II, as well as 
an "effective dimensionality"defr defined from a hyperscaling relation t4s) 
[ remember d = (2fl + y)/v ] (27) 

den .=  (2fl.n-+ yerf)lveir = 2v + w (19) 

It should be stressed that the effective exponents in Table II have a relative 
accuracy presumably of about  10% only, due to a variety of e r ro r s - -  
inaccuracy of To, ambiguity of the fits to Eqs. (13) and (17), and statistical 
errors in the raw data. Discarding thus the data for D = 8- -which  may be 
anomalous,  since for N =  32 the radius of gyration ((R2) 1/2~7(33)) is of 

the same order as the film th ickness- -both  fle~ and Yerr are compatible with 
the expected behavior, namely a smooth interpolat ion between the two- 
dimensional  (for small D) and the three-dimensional values (for larger D). 
However, vefr= 1/u shows a surprising nonmono ton ic  variation: while the 
decrease with increasing D for small D is expected the increase for D/> 20 
is unexpected. Also de~r stays close to d = 2 throughout ,  rather than inter- 
polating between d =  2 and d =  3 smoothly, as suggested in ref. 45. Thus 
either the systematic errors in our procedures are distinctly larger than 
estimated, or the dimensional  crossover in polymer blend films has some 
unexpected features. 

A somewhat more systematic description of dimensional  crossover can 
be derived as followsJ 3~' 32) Instead of working with Eq. (13) we formulate 
a scaling assumption in terms of the variables t~  := 1 - T/Tc(D = oo) and 
L, i.e., 

( IMI  k) = D-klh/~'31~k(L/O , Dl /V3t~)  (20) 

Since Eq. (20) formulates the finite size scaling with respect to the bulk 
three-dimensional critical point  Tc(D = ~ ) ,  the three-dimensional 

Fig. 6. Log-log plot of ([MI)L v versus z :=L't, for (a) D= 16 and (b) D=36. Three 
choices of L are inclucled as indicated. For D = 16 the choices for the effective exponents are 
u = 1.40 and v = 0.241, and for D = 36 they are u = 1.21 and o = 0.366. The solid straight lines 
at the upper branch of the scaling functions represent its asymptotic behavior, ~r(z >> 1 )= 
/~(D) z p~ where for D= 16, fl~fr=0.172 and /~(D)= 1.53, while for D=36, flc~r ~0.303 and 

~ 1.56. Note that the lower branch of the scaling functions ( I M[ ) L" describes temperatures 
T> T,.(D) and is of no interest here. 
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exponents have to be used. This scaling assumption is valid if both L and 
D are very large, whereas the aspect ratio L / D  may be arbitrary. Using 
Eq. (11), we derive from Eq. (20) an analogous scaling expression for the 
scattering function 

Sr = D~'3/~3 S( L /D ,  D 1/~3 too) (21) 

by defining S: =(L/D)2(7~2-7~l 2) and using the hyperscaling relation 
Y3 + 2fl3 ----- 3V3" 

From Eqs. (20) and (21) one can justify Eq. (1) and additionally 
derive the dependence of ( IMI)  and of Sco~t on L. In order to obtain 
Eq. (1), let us consider the limit L ~ oo at f i x e d  D. In this limit two-dimen- 
sional criticality emerges as the singularity of the scaling functions when 
the second argument y = D ~m t o~ reaches a critical value y,. : = y (T~(D) ) ,  

< IMI > oc D-P3/V3(y _y~)p2 = D(p2-a3v~3(too _ t~.~)p2 (22) 

Scon oc D~'3/"3(y -y~) -~"-  = D(~'3-~'-)/"3(t~ - t . . . .  )-~"- (23) 

The relation 

y~ = y (T , . (D) )  = D'/"3 t~,~ (24) 

implies 

T ~ ( ~ )  - Tc(D)  = T ~ ( ~ )  y c D  - ' / '3  cc D -l/v3 (25) 

i.e., Eq.(1). In addition, Eqs. (22) and (23) immediately yield the D 
dependence of the amplitude /~(D) of the order parameter and of the 
amplitude /~(D) of the collective structure function 

1~(D) ~ D(f'--f3)/v3,~, D-~ I?(D) oc DI>"--~'3vV3~ D ~ (26) 

In order to derive the dependence of ( [MI ) and of ScoH on L, we fix y at 
its value at T~(D), i.e., at y =y~ and calculate the variation of ( [MI)  and 
of Scoli with L. Defining 

M k ( L / D ,  yc) = I ~ k ( L / D )  and S ( L / D ,  Yc) = ~ ( L / D )  (27) 

we can rewrite Eqs. (20) and (21) as follows: 

( IMI ) ( T =  To(D))  = D - # ~ m ~ ( L I D )  

Soon( T = To(D))  = D ~'3/"3 g ( L / D )  

(28) 

(29) 
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Fig. 7. Log-log plot ofx(T- Tr D -'av3 (crosses) and Xm~D -rJ/~ (diamonds) versus L/D 
(note that the "susceptibility"x is related to the scattering function via X = Sr T). Both 
straight lines have the theoretical slope of y2/v2 = 1.75, 

For large L, Eqs. (28) and (29) must become compatible with Eqs. (13) 
and (17), where the exponents u, v, and w take their two-dimensional values 
(i.e., u=fl2/v2, v=l/v2, _w=y2/v2). This implies that ~(L/D>>I)oc  
(L/D)-p.,/v2, and similarly S oc (L/D) ~'2/'2. Thus we predict that at T =  To(D) 
for large LID the order parameter and the scattering function scale as 

( I M I ) ( T =  Tc(D)) o: ( I M l ) ( T =  Tmax) oc Da'-/v2-a3/V3L -p2/"~ (30) 

Seon(T= To(D)) oc S e o l I ( T =  T m a x )  oC Dr3/v3-~'2/V2L ~'2/~ (31) 

Here we have used the fact that the same scaling also applies at the posi- 
tion Tmax of the maximum of the scattering function. Equations (25), (30), 
and (31) are the.major predictions of the presented scaling theory. 

Before testing these predictions in our simulation we want to show the 
internal consistency of our approach by the following consideration. 
Noting that the correlation length ~ scales as [cf. Eqs. (20)-(23)] 

~=D~(L/D, Dl/,3too) L - %  Dl_V2/v3(too_to~.c)_,2 (32) 

822/80/5.6.7 
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we see that the Eqs. (22) and (23) reduce to Eqs. (30) and (31) when 
putting ~ ,~L in Eq. (32). In addition, since the second moment ( M  2) at 
T =  To(D) or at Tma ~ scales analoguously, 

( M 2 > ( T =  Tc(D)) oc ( M a > ( T =  Tmax) oc D2('a2/v2-f3/V3)L -2#2/v2 (33) 

Eq. ( 11 ) implies 

Sr To(D)) oc Sco,(T= Tm,x) oc L 2D 1-2#3/~3 = D 3 - 2#3/,,3( L /D  )2-  2#2/,,2 

(34) 

If one uses the hyperscaling relations 3 -  2f13/v 3 = ~3/v3 and 2 -  2fl:/v2 one 
sees that Eq. (34) is also compatible with Eq. (31). Therefore both Eqs. (30) 
and (31) may be derived from the scaling assumption of the correlation 
length, which shows the internal consistency of presented theoretical 
description. 

This crossover scaling description is now tested in Figs. 7 and 8. While 
for the "susceptibility" X (X = Sco, e/kB T is the response function c3(M>/aH 
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with respect to the conjugated "field" H for an Ising magnet) the data 
collapsing suggested by Eq. (29) seems quite perfect, and the expected 
two-dimensional criticality [see Eq. (31)] is rapidly approached, there is 
more scatter for the individual moments ( I M I )  2, ( M  2) (Fig. 8). Also, 
for In(L/D)~< 2 a power law with twice the expected slope appears, which 
is unexpected. Only for In(L/D)>>.2 do we see the expected behavior, 
Eqs. (30) and (33). Thus it is less of a surprise that for D >/20 [where the 
region In(L/D) >/2 was not reached] the effective exponents in Table II do 
not fully show the expected trend yet. 

There is some arbitrariness in whether one should analyze X = Sco, e/ks T 
or Sco, itself. In principle, for large enough film thicknesses all data would 
lie so close to the critical point that one could replace e/kB T by e/kB T~ 
with negligible error. Unfortunately, part of our data are rather far away 
from To(D), and hence the scaling plots using x(T=Tmax) and 
Sco,~(T = Tm~x) are not strictly equivalent. Since we have found that the 
scaling plot for X is presumably closer to the asymptotic behavior, this plot 
is shown in Figs. 7 and 8. 

4. DISCUSSION OF THE CRITICAL POINT SHIFT AND OF THE 
PHASE D I A G R A M S  

Figure 9 tests Eqs. (1) and (25). It is seen that the expected behavior 
is compatible with the data for D/> 20 only. This is not a surprise, since 
for D<~ 16 the shift of Tc is relatively large, 1 -  Tc(D)/Tc(~)>~0.2, and 
thus the system is really outside of the critical region, where the three- 
dimensional Ising critical behavior dominates. If we used the mean-field 
theory for the description of the shift of To(D), the result for the correla- 
tion length(26) ~ = ( Rg > 1/2 [ 1 - T/Tc(oo ) ] - i/2 implies that at Tc(D = 16) 
the bulk correlation length of a three-dimensional blend would only be 
about twice as large as the radius of gyration, namely ~ ~ 15 for N =  32. 
A possible interpretation of the small-D behavior of Fig. 9 then is to 
assume that the crossover length ~ ..... [see Eq. (2)] is of this order, since 
we expect Tc(oo) -To(D)  oc D -~ for D~<~ ...... (15~ in the regime of mean- 
field critical behavior. Note that Tang et al. ~5~ estimated the prefactor of 
Eq. (15) to be about 0.2. Assuming thus ~ ..... ,~0.2bN with N =  32 and 
b ~ 2.7 (33> yields ~ ..... ~ 17. This estimate reinforces the conclusion that our 
data for small D fall in the regime D < ~ ..... . Although the shift of Tc can 
thus be described by the mean-field relation Tc(~)--Tc(D)oc D -t  for 
D ~ ~ ..... for small D, the critical behavior near T~(D) is a two-dimensional 
Ising behavior. In the picture of Fig. 1, a variation of T at constant N 
corresponds to a move parallel to the abcissa. When D is small, the broken 



1028 Rouault et  al.  

~._u 
! 

o 

r 
J 

3.5 

3 

2.5 

2 

1.5 

. 5  i i i i i i i i i 

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 

InD 

Fig. 9. Log-log plot of Tc(oo) - Tr versus D. For small D, the straight line corresponds 
to a shift T~(oo)-- To(D) oc 1/D, while the second straight line for larger D shows Eq. (25) 
with v 3 = 0.63. 

straight line is close to the ordinate axis, and there is only a small regime 
of three-dimensional Ising behavior that is crossed, or no such regime at 
all. Then a crossover from mean-field type behavior--very far from To--to 
two-dimensional Ising behavior occurs. 

Unfortunately, the data for/~err (Table II) are not accurate enough to 
allow any convincing check of Eq. (26): since the scaling prediction for the 
shift of Tc is seen for D/> 20, only data for D >t 20 are expected to be useful 
for checking Eq. (26) as well. Within our accuracy, ~e~D) is constant for 
D>~ 16, and thus the decrease predicted in Eq. (26) is not observed. 
However, one must distinguish the true critical amplitude ~(D)--applying 
in the region very close to To(D), where the true critical exponent f12 = 1/8 
determines the vanishing of the order parameter--from the effective 
amplitude /~fr in Table II, since for D t> 20 the effective exponent fl~ff 
deviates from f12 distinctly. 

Nevertheless these data are useful to discuss the phase diagram (Fig. 10). 
The expected flattening of the coexistence curve due to the crossover 
over to two-dimensional Ising behavior with decreasing film thickness is 
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Fig. 10. Phase diagram T v s .  ~ A / ( ~ A ' ~ - ~ B )  of the unmixing transition in the thin film. The 
symbols refer to different film thicknesses: D=8, 10, 12, 14, 16, 20, 24, 28, 36, and 48 (from 
the bottom to the top). Note the strong flattening of the coexistence curve, particularly for 
thin films, which is not expected from Ginzburg-Landau theory (see text for details). 

clearly seen. These coexistence curves are dramatical ly different from their 
(parabolic)  mean-field counterpar ts  (cf., e.g., Fig. 2 of ref. 15). Thus, if 
T< T,.(D) one enters very quickly the strongly segregated regime of the 
polymer  blend in the thin film. 

Of  course, in real systems one expects to encounter  also deviations 
from the results discussed here due to the nonneutral i ty of  the surfaces, i.e., 
the surfaces will typically preferentially at t ract  one component  of  the blend. 
This effect leads to an addit ional distortion of the phase diagram: even if 
the phase d iagram is symmetric  in the bulk, it becomes asymmetr ic  in the 
thin-film geometry.  ~x3) This well-known consequence of "capillary conden- 
sation ' '~-~3) is expected to apply to polymer  blends in thin-film geometry,  
too, but to our knowledge still needs to be explored in detail. 
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